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Abstract

In this paper a numerical investigation on the possibility to simulate and predict cyclic plastic response incorporating
damage has been performed. To this purpose, unit cell and continuum approaches based on porous metal plasticity and
continuum damage mechanics (CDM) have been considered. In particular, the porous metal plasticity model of
Leblond, Perrin and Devaux (LPD model) and the CDM model developed by Pirondi and Bonora were used. Finite
element (FE) simulations were performed for each approach with different degrees of triaxiality and the results are ana-
lyzed and compared.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Nowadays, micromechanics is a recognized powerful methodology for the investigation and prediction
of materials behavior at the meso/macroscale using characteristics of the microstructure through the anal-
ysis of periodic representative volume elements (RVEs, meso-elements), see e.g. Nemat-Nasser and Hori
(1993) and Aboudi (1989). For this purpose, unit cells have to be defined in order to capture the microstruc-
tural features to be described. One of the major advantages offered by micromechanical modelling is the
possibility to incorporate damage processes and to follow the associated progressive degradation of the
RVE by monitoring the overall properties. In the literature, micromechanics has been successfully used
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Nomenclature

b isotropic hardening exponent
dij Eulerian strain rate tensor

h(a) internal variables for isotropic hardening
q stress deviator related part of the yield function
q1;q2;q3 parameters of the GTN and LPD models
p hydrostatic stress related part of the yield function
C kinematic hardening modulus
D damage variable in CDM
D0 initial damage in CDM
Dcr critical damage in CDM
E0 Young�s modulus of undamaged material
E effective (damaged) Young�s modulus
Ei mesoscopic strain (i = 1,2,3)
Eeq mesoscopic equivalent strain
Hh i step function
f void volume fraction
fc critical void volume fraction
f* damage variable in GTN and LPD
R current radius of the yield surface
R0 initial yield stress (zero plastic strain)
R1 saturated radius of the yield surface
T stress triaxiality
xij backstress tensor
x0ij backstress tensor deviator
a damage exponent
eij strain tensor
eelij elastic strain tensor

eplij plastic strain tensor
ecr theoretical failure strain under uniaxial state of stress (T = 0.333)
eth damage threshold strain (uniaxial)
epleq accumulated equivalent plastic strain
c kinematic hardening exponent
j damage acceleration parameter
k plastic multiplier
req equivalent von Mises stress
rij Cauchy stress tensor
rm mean stress
m Poisson�s ratio
U yield function
Ri mesoscopic stress (i = 1,2,3)
Rm mesoscopic mean stress
Req mesoscopic equivalent stress

338 D. Steglich et al. / International Journal of Solids and Structures 42 (2005) 337–351



D. Steglich et al. / International Journal of Solids and Structures 42 (2005) 337–351 339
to predict overall behavior of composites at the macroscale as well as damage evolution in more traditional
materials such as metals. In most of the cases the modelling has been focused in predicting materials con-
stitutive response under monotonic loading only.

However, engineering components and structures may be subjected to loading conditions, which can
force the material to undergo cyclic plastic flow. The occurrence of plastic deformation and accumulation
with cycles is a cause of damage development that, sooner or later, will lead the material to fail. Damage is
related to the irreversible processes that occur in the materials microstructure, therefore its presence affects
the material constitutive response at meso/macro scale. Examples for this particular loading case are earth-
quake loadings, overloads and the reeling of pipelines. Under cyclic plastic loading, irreversible microstruc-
tural changes take places, in order of increasing strain amplitude, in the following forms: persistent slip
bands, rearrangement of dislocation systems into cell structures, and void nucleation and growth at the sec-
ondary phase inclusions (Klesnil and Lukas, 1980; Polak, 1991). The latter mechanism is peculiar of high
strain amplitudes, for which very short lives are usually expected.

Void nucleation and growth has been firstly recognized as the key micromechanism of rupture for ductile
metals by Mc Clintock (1968) and Rice and Tracey (1969) who also proposed a failure criterion based on
the growth of cavities. Since then, many models and criteria have been proposed in the literature. Today,
these approaches can be sorted in three main classes: (i) abrupt failure criteria, (ii) porous metal plasticity,
and (iii) continuum damage mechanics (CDM). The major feature of these approaches based on continuum
mechanics is, in principle, the transferability from specimen to structure since model parameters should be
geometry-independent. In the first group, ductile failure is predicted when a micromechanical variable, for
instance the cavity growth rate (Rice and Tracey, 1969), reaches a critical value characteristic of the mate-
rial. In the second group, the damage effects are accounted for into the plastic potential by a softening term,
which is usually related to volume fraction of voids in the material. This internal variable induces a pro-
gressive shrinkage of the yield surface until failure occurs due to loss of stress carrying capability. Gurson
(1977) derived a void evolution law from the analytical study of a single isolated cavity in an elastic-per-
fectly plastic matrix. Needleman and Rice (1978) extended the Gurson model in order to account for the
effects associated to secondary particles nucleating voids. Tvergaard and Needleman (1984) further modi-
fied the Gurson model in order to take into account the acceleration of the failure process induced by voids
coalescence (GTN model). A porous metal plasticity model based on thermodynamical principles has been
developed by Rousselier (1987).

The CDM approach instead, initially proposed by Lemaitre (1985), considers the effects associated to a
given damage condition through the definition of a thermodynamic state variable. In this framework, the
set of constitutive equations for the damaged material is derived under the assumption of the existence of a
damage potential uncoupled from that for plasticity. Damage affects not only the material�s yield function
but also reduces the stiffness through the definition of the effective stress. Many authors modified the
Lemaitre linear damage formulation in order to fit experimental damage measurements relative to different
classes of metals, see for example Chandrakanth and Pandey (1993). Recently, Bonora (1997) proposed a
modified nonlinear CDM model that overcomes some of the disadvantages showed by other formulations,
such as large number of damage parameters, the lack of transferability of damage parameters to multi-axial
stress and the inadequacy of describing damage evolution for different classes of metals.

So far, very little attention has been given to the possibility to investigate cyclic plasticity by means of
micromechanics incorporating damage. As far as the groups of models discussed above is concerned,
Leblond et al. (1995) as well as Besson and Guillemer-Neel (2003) introduced nonlinear kinematic harden-
ing into the GTN model while Pirondi and Bonora (2003) extended the nonlinear CDM model (Bonora,
1997) to tension–compression loading.

In this paper, numerical investigations on the possibility to simulate and predict cyclic plastic response of
metals incorporating damage has been performed. To this purpose, both the unit cell model and the con-
tinuum RVE approaches have been analyzed and the results have been compared. In Section 2, the
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constitutive equations of rate-independent plasticity are briefly reviewed. In Section 3, the unit cell model,
LPD and CDM formulations for the description of cyclic plastic loading of ductile metals in Section 3 are
summarized. Details on the material properties considered in this study and FE modelling are given. Final-
ly, in Section 5, the results obtained with the three formulations are presented and discussed.
2. Rate-independent plasticity

Inelastic deformations are described in the framework of the classical theory of rate-independent plas-
ticity. The yield function has the general form
Uðq; p; hðaÞÞ6 0; q ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3

2
s0ijs

0
ij

r
; p ¼ � 1

3
skk; ð1Þ
s0ij denoting the deviatoric part of the tensor sij. The dependence of U on p vanishes for incompressible plas-
tic deformations, but appears in pressure-dependent plasticity. The difference between Cauchy stresses, rij,
and back stresses, xij, for kinematic hardening,
sij ¼ rij � xij; ð2Þ

is used. The scalar quantities h(a) denote internal variables for isotropic hardening or softening. The (sym-
metric) strain rate deformation tensor is decomposed in an elastic and a plastic contribution,
dij ¼ del
ij þ dpl

ij ; ð3Þ
which is equivalent to the multiplicative decomposition of the respective displacement gradients for small
elastic strains. Hooke�s law is assumed for elastic deformation rates and Jaumann stress rates according to
the Hughes and Winget (1980) approach
r
r
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An associated flow (or normality) rule
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is postulated for the plastic deformation rates. The two scalar variables, _eq and _ep, denoting deviatoric and
dilatoric strain rates as introduced by Aravas (1987), have to satisfy the condition
_ep
oU
oq

þ _eq
oU
op

¼ 0; ð6Þ
which derives from eliminating the plastic multiplier, _k.
Finally, evolution equations for the internal variables of isotropic and kinematic hardening,
_h
ðaÞ ¼ gðeplij ; sij; hðaÞÞ

x
r
ij ¼ F ijðeplij ; sij; hðaÞÞ

9=
; ð7Þ
complete the constitutive relations. Strain hardening materials contain a single scalar hardening variable,
the accumulated equivalent plastic strain,
epleq ¼
Z t

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3dpl

ij d
pl
ij

q
ds; ð8Þ
determining the current flow stress by a material dependent relation RðepleqÞ.
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3. Micromechnical models

3.1. Unit cell approach

The micromechanical process of damage in a ductile material can be studied on representative volume
elements (RVE) or ‘‘unit cells’’, in which a cavity is introduced in order to simulate a reduction of net resist-
ing area. In this way, the microstructure of a damaged material is represented by a periodic array of cavities
in an elasto-plastic ductile matrix. These cell model calculations have been used to simulate and study the
behavior of porous solids in order to determine a macroscopic yield surface in the case of small overall
strains (Zohdi et al., 2002) or to calibrate model parameters of continuum models which account for
any kind of damage in the finite strain regime. They have mostly been used for monotonous loadings,
see Koplik and Needleman (1988), Brocks et al. (1995) and Leblond et al. (1995). Investigations of unit cells
under reversed loadings have been performed by Ristinmaa (1997), Devaux et al. (1997) and Besson and
Guillemer-Neel (2003). Usually, the simplest configuration is chosen, that is hexagonal cylindrical cells,
which are then approximated by circular cylinders to allow for simple axisymmetric calculations. They give
a lower-bound limit-load solution as shown in Kuna and Sun (1996). The cell of initial diameter, L0, and
height, L0 contains a spherical hole of radius r0 and is subject to homogeneous radial and axial displace-
ments. The boundaries of the cell are constrained to be straight and orthogonal. The ‘‘mesoscopic’’ prin-
cipal strains, Ei (i = 1,2,3), are given by
E1 ¼ E2 ¼ ln 1þ �u2
r0


 �
E3 ¼ ln 1þ �u3

r0


 �
9>=
>;: ð9Þ
The correspondent ‘‘mesoscopic’’ true principal stresses, R1 = R2, R3, are the average reaction forces at the
cell boundaries per momentary areas. Here and in the following, capital letters denote quantities on a
‘‘mesoscopic’’ length scale and small letters quantities on a ‘‘microscopic’’ scale, respectively. Uniaxial
equivalent stress, Req, and strain, Eeq, are defined for cyclic processes by
Req ¼ R3 � R1

Eeq ¼ 2
3
jE3 � E1j

)
: ð10Þ
Stress triaxiality is defined as the ratio of hydrostatic and von Mises equivalent stress
T ¼ Rm

Req

¼ 2R1 þ R3

3jR3 � R1j
: ð11Þ
The void volume fraction, f, is defined as the ratio of the current void volume, Vvoid, and the total cylinder
volume, V cyl ¼ p

4
L3. The former can be computed either via the condition of incompressibility for plastic

deformations (Koplik and Needleman, 1988) or from the sum of the Jacobians of all finite elements, which
equals (Vcyl � Vvoid).

3.2. Porous plasticity models

The damage models are formulated in the framework of the theory of rate-independent, but pressure-
dependent plasticity. Models of ductile damage include (at least) one additional internal variable––besides
the accumulated equivalent plastic strain, epleq, for isotropic and back stresses, xij, for kinematic hardening––
which is identical to or depends on the void volume fraction, f. The latter is defined as the ratio of the vol-
ume of all cavities in a material element to its total volume, which corresponds to the definition given for
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the unit cell approach. An evolution equation holds for the void volume fraction, consisting of a void
growth and a void nucleation part, in general,
_f ¼ _f growth þ _f nucl with f ðt0Þ ¼ f0: ð12Þ

The growth term is obtained from the conservation of mass,
_f growth ¼ ð1� f Þdpl
kk; ð13Þ
and the nucleation term is commonly adopted from an empirical approach by Chu and Needleman (1980)
assuming a normal distribution of void nucleating particles.

The various models proposed in this context differ by the yield function, Eq. (1), mainly. The yield func-
tion of the so-called GTN model,
U ¼
3r0

ijr
0
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2ðRðepleqÞÞ2
þ 2q1f

� cosh q2
rkk

2RðepleqÞ

 !
� ð1þ q3f

�2Þ ¼ 0; ð14Þ
has originally been derived from micromechanical considerations by Gurson (1977). The modifications by
Needleman and Tvergaard (1984); Tvergaard and Needleman (1984) concern the introduction of three
additional material parameters, qi (i = 1,2,3), affecting the yield behavior and the damage variable,
f *, which equals the void volume fraction, f, up to a critical value, fc, for beginning coalescence of voids,
beyond which damage is accelerated by a factor j > 1,
f � ¼
f for f 6 fc;

fc þ jðf � fcÞ for f > fc:

�
ð15Þ
The GTN model in its original form accounts for isotropic hardening, only, which limits its application to
monotonous loading, in principle. Leblond et al. (1995) have extended Gurson�s yield function to kinematic
hardening by replacing the Cauchy stress tensor by the difference of Cauchy stress and backstress tensor,
see Eq. (2), which leads to the yield function
U ¼
3s0ijs

0
ij

2�r2
1

þ 2f � cosh q2
skk
2 �r2

� �
� ð1þ q3f

�2Þ ¼ 0: ð16Þ
The quantities �r1, �r2 result from a re-calculation of the homogenisation problem for hardening material.
The numerical implementation used here is described in Mühlich and Brocks (2003). Both models, the
GTN and the LPD model, have been implemented as user-supplied material routines (UMAT) in the
FE code ABAQUS.

3.3. CDM model

In Bonora (1997) a nonlinear damage model in the framework of continuum damage mechanics is pro-
posed. Features of this model are:

• No softening effect appears explicitly in the material yield function. This is motivated by the fact that it is
experimentally not possible to separate the hardening effect due to plastic deformation from the soften-
ing effect induced by damage evolution. Consequently, the material yield function is written:
Uðsij;R; xijÞ ¼ q� f ðR; xij;DÞ ¼ 0; ð17Þ

where f (R,xij,D) is the experimentally determined material flow curve where damage effects on R and xij
are already taken into account.
• The damage potential is nonlinear in the accumulated plastic strain.
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The CDM definition does not make any distinction between the possible way in which damage occurs
from the physical standpoint. Besides, from the thermodynamics standpoint damage can only increase since
the related dissipation must always be null or positive. Anyway, although the damage mechanisms and their
related effects onto the overall mechanical properties are not yet established in detail in the case of cyclic
plastic loading, it is generally recognized that its effects and rate of accumulation can be generally different
under tension and compression, respectively (Lemaitre, 1985). To account for this fact, Pirondi and Bonora
(2003) extended the formulation to the case of cyclic plastic loading according to the following hypotheses,

based on the sign of the (continuum) triaxiality factor T = rm/req where rm ¼ 1
3
rkk and req ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
r0
ijr

0
ij

q
:

• Damage accumulates and its effect on material stiffness is active if and only if T is positive, i.e.
if rm=req P 0 and e P eth 7! _D > 0; D 6¼ 0 and E ¼ E0ð1� DÞ: ð18Þ

• Damage does not accumulate and its effects are inactive if T is negative,
if rm=req < 0 and D > 0 7! _D ¼ 0 and E ¼ E0: ð19Þ
The complete set of constitutive equation can be written as follows:
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¼
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The superscript ‘‘+’’ indicates quantities increasing only if triaxiality is positive.
4. Modelling

4.1. Material

The material considered in this work is a German low alloy steel 20MnNiMo55 (similar to A508 in the
US designation). In Tables 1 and 2 respectively, the reference composition and the standard mechanical



Table 1
Chemical composition of 20MnMoNi55 steel

C Si Mn P S Cr Mo Ni

0.19 0.2 1.29 0.007 0.008 0.12 0.53 0.8

Table 2
Standard mechanical properties of 20MnMoNi55 steel

Upper yield strength (MPa) Tensile strength (MPa) Elongation at failure (%) Contraction at failure (%)

481 581 25.6 67.6
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properties are given. Its cyclic hardening behavior is described with the model of Chaboche (1989), which
combines a nonlinear kinematic and isotropic hardening. An analytical relation with an initial yield stress,
R0, and a saturation value, R1, is applied for the isotropic flow stress,
R ¼ R0 þ ðR1 � R0Þð1� e�bepleqÞ; ð28Þ

and an extension of Ziegler�s law with an additional recall-term for the evolution of back stresses
_xij ¼
C

RðepleqÞ
sij _e

pl
eq � cxij _e

pl
eq: ð29Þ
This model allows to reproduce most of the features of the cyclic plastic behavior such as Bauschinger ef-
fect, cyclic hardening or softening, ratchetting of strain under constant stress amplitude and relaxation of
mean stress. The model parameters, namely R0, R1, b, C, c, have been inferred from the first 10 loading
cycles of cyclic loading tests made on round bars of 20MnMoNi55 steel, since the comparison of the per-
formance of the different models is made within this number of cycles. In this interval, the material showed
strain hardening behavior, therefore the parameters were tuned on this basis as R0 = 396.6 MPa,
R1 = 471.6 MPa, b = 8, C = 7500 MPa, c = 70.

Model parameters used for the porous metal plasticity models were taken either from quantitative
microstructural analysis or from the literature Bernauer and Brocks (2002). The initial void volume fraction
in the unit cell approach, the GTN- and LPD models was set to 0.001. The values of q1, q2 and q3 are 1.5,
1.0 and 2.25, respectively. In this study the coalescence of voids subjected to cyclic deformation is not con-
sidered. Therefore, in the simulations, the parameter j was set equal to 1, which leads to f* = f for all times.
As the investigation should cover solely the void growth mechanism, void nucleation Chu and Needleman
(1980) is not considered here. The parameters of the CDMmodel a, Dcr, D0, ef, eth employed here were eval-
uated by fitting the results of tests in which the damage was evaluated from the decrease of stiffness, i.e.
D = 1 � E/E0 and plotted as a function of plastic strain (Gentile and Pirondi, 2003). Damage in this mate-
rial accumulates very steeply in the early deformation stage, almost showing a stepwise after yielding. This
behavior can be connected to the presence of weakly bonded MnS inclusions (Decamp et al., 1997). A good
fit of damage vs. strain just after yielding was obtained taking an initial damage D0 = 0.15. The parameters
of all of the models are summarized in Table 3.

4.2. FE models

For the unit cell calculations, an axisymmetric FE model representing one quarter of the cell as shown in
Fig. 1 is considered. Symmetry conditions are imposed at x2 = 0, x3 = 0 in order to model only one quarter
of the cell. Eight-noded, reduced integration elements were used. The deformation of the cell boundaries is
homogeneous with help of constraint equations (‘‘plane-remains-plane’’). The radius of the spherical void



Table 3
Hardening and damage parameters of the GTN/LPD and CDM models

Hardening R0 (Mpa) R1 (MPa) b C (MPa) c
396.6 471.6 8 7500 70

GTN/LPD q1 q2 q3 f0 j
1.5 1.0 2.25 0.001 1

CDM D0 Dcr eth ef a
0.15 1 0.0213 1.5 0.362

Fig. 1. Undeformed and deformed FE mesh (quarter model) of a unit cell containing a void with f0 = 0.001.
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was chosen in order to simulate an initial void volume fraction f0 = 0.001. The cell is subjected to radial and
axial stresses following a prescribed history, R2(t), R3(t). In order to have constant mesoscopic triaxiality, Eq.
(11), during the entire load cycle, the ratio of R3/R2 has to be kept constant. If the simulation is run with
constant strain amplitudes, the current value of the equivalent stress has to be checked in every time step
and the applied stress controlled as necessary. Simulations were performed with a triaxiality factor T = 1/
3 (uniaxial state of stress), T = 1 (intermediate constraint) and T = 2 (severe constraint), respectively. The
range of the equivalent strain, Eeq , was chosen to be 0.03 or 0.05, respectively. The strain ratio was chosen
to be Re = 0 (positive strains) and Re = �1 (symmetric cycle). The same approach has been followed for the
simulation with the LPD and CDM models, except that in this case the mesh is made of a single element.
5. Results and discussion

Fig. 2 shows the overall (or mesoscopic) equivalent stress–strain curve of a unit cell for T = 1 under
repetitive strain, Eeq = 0.05, Re = 0, for purely isotropic and purely kinematic hardening. The respective
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material parameters for this particular numerical study have been determined in order to show an identical
stress–strain curve during the first cycle and are therefore not related to the steel 20MnNiMo55 envisaged
above. Moreover, the model parameters are chosen in a way that the isotropic hardening does not saturate
in the considered strain range. Thus, hardening parameters R0 = 115 MPa, C = 700 MPa and c = 2 were
used to describe the kinematic hardening. The respective yield function for pure isotropic hardening was
then defined by data points. For the cell with isotropic hardening, the mesoscopic stress is increasing with
the number of cycles. In the case of kinematic hardening, a slight shift of the stress response is observed,
which cannot be explained by means of the hardening model, only. As the stress field in the cell depends on
the hardening model chosen, this will affect the evolution of the void volume fraction of the cell and thus
influence the mesoscopic stress response.

More interesting, however, is the evolution of the void volume and the question whether it is reversible
or increases with increasing number of load cycles. The latter will be addressed as ‘‘ratchetting’’ and is a
necessary condition for accumulation of damage on the microscopic level leading to final failure. Fig. 3
shows the normalised void volume fraction, f/f0, in dependence on the equivalent overall strain, Eeq, for
the same numerical test depicted in Fig. 2. Note, that both cyclic curves start at f/f0 = 1. The unit cell with
isotropic hardening material shows an increasing void volume fraction after the first cycle, followed by a
stabilisation. The prediction based on pure kinematic hardening is rather complex, starting with f/f0 < 1
after the first cycle at Eeq = 0 and subsequently increasing void volume fraction in the following cycles.
An analogous simulation with ideal plastic behavior of the matrix material (not shown here) does not show
any ratchetting of the void volume fraction at all.

In the following, the hardening behavior as well as the damage model parameters described in Section 4
are used, see Table 3. The mesoscopic behavior of the unit cell and the performance of the two damage
models, namely the LPD and the CDM model, is displayed in Figs. 4–6 for different triaxialities. In this
investigation, a symmetric loading cycle (Re = �1) is prescribed. For the sake of easier understanding,
the absolute value in the definition of the mesoscopic equivalent strain, Eq. (10), was dropped. In this case,
Eeq can reach negative values. The relative void volume fraction, f/f0, is plotted as a function of the meso-
scopic strain difference, E3 � E1, for the unit cell models and as a function of the microscopic strain
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difference, e3 � e1, for the LPD and CDM models. The assumption of a unit cell as a representative volume
element allows for the comparison of the ‘‘internal variables’’ as a function of the effective kinematic
quantities.

For the LPD model, porosity remains constant during elastic unloading. This effect is due to the fact that
void evolution is triggered by the plastic strain rate, see Eq. (13). On the other hand, the evolution of void
volume fraction in the case of the unit cell allows for a decrease during unloading. More interesting, how-
ever, is that for all triaxialities a ratchetting of the void volume fraction is observed in the case of the unit
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cell. It appears to be very weak in the case of uniaxial tension, but is rather strong for the higher triaxial-
ities. Thus it can be concluded that successive void growth with the number of loading cycles is a ‘‘micro-
mechanism’’ of a voided material.

Damage evolution for the GTN model is not shown here, since under fixed triaxiality f(Eeq) is a single
curve showing no ratchetting, as Leblond et al. (1995) have proven. This holds more generally for any
model with a yield function of the form Uðq=RðepleqÞ; p=RðepleqÞ; f Þ if oU/oq and oU/op are even and odd,
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respectively, see Devaux et al. (1997). As a consequence, ratchetting of the void volume fraction can only be
achieved if the stress triaxiality is not constant (Ristinmaa, 1997).

Since unit cell and LPD model have the same underlying micromechanical approach (i.e. porosity) the
evolutions of the void volume fraction are directly comparable in Figs. 4–6. The behavior of the LPD model
is different from that of the cell. The amplitude of the void volume fraction is generally higher. A change in
void volume fraction with the number of cycles is observed, specially for the higher triaxialities, but it pri-
marily affects the maximum and minimum value of f. The maximum value is decreasing, while the minimum
value is increasing. After a few cycles, an almost stable cycle is achieved and the predictions of the LPD
model are approaching those of the unit cells. In the case of the LPD model, the evolution of f can be tuned
by adjusting the parameter q2. Results for q2 = 0.8, 1.0 and 1.2, respectively, are shown in Fig. 7 in the case
of a triaxiality equal to 2. The higher the value of q2, the faster void growth occurs during each cycle. This
effect is more pronounced for high triaxialities, as q2 directly affects the influence of the triaxiality within the
yield function, see Eq. (14). Anyway, the void growth appears to be overestimated with respect to the
predictions of a unit cell.

The evolution of the accumulated damage, D, in the case of the CDMmodel, is plotted together with the
results of the unit cell and of the LPD model for the sake of a qualitative comparison, since a direct relation
between D and porosity can not be given. The main difference of the CDM results compared to porous
metal plasticity in terms of damage evolution is its monotonic accumulation. In the tension phase, damage
is evolving, whereas in the compression phase its value is kept constant. Therefore, damage is always
increasing. In the simulations depicted in Figs. 4–6, D starts to evolve from zero at the onset of plasticity,
Eeq > 0 and adopts the value of D0. After the threshold strain, eth, is reached, accumulation starts at the first
reversal in tension. Note the sensitivity of damage parameter evolution on the triaxiality. As the model
parameters have been fitted to experimental results, the mesoscopic stress response of all three approaches
is very similar.

Nonlinear kinematic hardening has to be applied in order to describe deformation under cyclic loading
realistically. The constitutive equations by Chaboche provide a sound basis for modelling the plastic defor-
mations of the undamaged material. Damage evolution can be introduced based either on micromechanical
considerations as in the porous metal plasticity (or Gurson type) models or on the concept of continuum
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Fig. 7. Response of a single element for LPD, influence of the q2-parameter on void volume fraction evolution, T = 2.
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damage mechanics (CDM). If damage evolution is considered as a micromechanical process of void
growth, a representative volume element (or unit cell) containing a single cavity can be considered as ref-
erence for the performance of any continuum model. Continuing void growth in every load cycle may then
be regarded as a physically ensured phenomenon. Decreasing void volume under reverse loading is also ob-
served in the unit cell which did not contain any inclusion, however. The evolution equations used in the
CDM model do not regard for the phenomenon of decreasing damage, but its effect on the mechanical
behavior.

Although the LPD model overestimates void growth compared to the predictions of the unit cell and the
CDM model does not allow for a direct comparison of its damage parameter with the void volume fraction
since it does not distinguish between voids and other kind of both models are able, however, to reproduce
some qualitative features of macroscopic deformation under cyclic loading. Future investigations have to
be extended to the macroscopic deformation behavior of test specimens in comparison to experimental
observations.
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